## Assignment 7: MTH 213, Fall 2017

## Ayman Badawi

QUESTION 1. a) Let $A=\{1,3,4\}$. Define " $\leq$ " on $A: \forall a, b \in A$, we say $a \leq b$ iff $a<b^{3}$. Then " $\leq$ " is not a partial order relation on $A$. Why?
b) Let $A=\{-5,-4,-2,-1\}$. Define " $\leq$ " on $A: \forall a, b \in A$, we say $a \leq b$ iff $a^{2}>b^{3}$. Then " $\leq$ " is not a partial order relation on $A$. Why?

Is $\leq$ an equivalence relation? If yes, how many elements does " $\leq$ " have? Do not write them down!
c) Let $A=\{2,4,6,8,10,12,18\}$ and $B=\{1,2,4\}$. Define " $\leq$ " on $A: \forall a, b \in A$, we say $a \leq b$ iff $b=m a$ for some $m \in B$. Then " $\leq$ " is a partial order relation on $A$. Why? Find maximal, minimal, least, and greatest elements of $A$ under $\leq$ if they exist.

## Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com
a) Symmetry $a \leq a$ iff $a<a^{3} \quad \forall a \in A$ so for element $1 \Rightarrow 1<1^{3}$ not true Not a partial order relation
b) i) Symmetry, $a \leq a$ iff $a^{2}>a^{3} \quad \forall a \in A$ .. $\quad \forall a \in A$, positive $S$ negative so it is true
Anti-reflexive: Assume $a \leq b$ and $a \neq b$. Show that $b \leq a$ $\forall a, b \in A, a^{2}>b^{3}$ but also $b^{2}>a^{3}$
Example, $a=-5, b=-4 \Rightarrow a^{2}>b^{3} \Rightarrow 25>-64$ if $b=-5, a=-4 \Rightarrow b^{2}>a^{3} \Rightarrow 25>-64$

Not true since
$a \leq b$ and $b \leq a$
ii) From above,
symmetry is true use the name $<=$
Reflexive: $a^{2}>b^{3}$ and $b^{2}>a^{3}$ so,$a<=\mathrm{b}$ and $\mathrm{b}<=\mathrm{a}$ so true
Transitive, Assume $a^{a<=b}$ and $b<=c$
$a<=b \quad a^{2}>b^{3}$ and $\dot{b<=c} \Rightarrow b^{2}>c^{3}$ square is always positive and cube is always negative for the set $A$.
$\therefore a^{2}>c^{3} \Rightarrow a<=c$
" $s$ " is an equivalence relation
$\frac{1}{}$ Note that there is only one equivalence class since a lea b for every $\mathrm{a}, \mathrm{b}$ in A . Thus $[-2]=\mathrm{A}$.
The elements of <= form a subset of AXA. Since we have one equivalence class, the elements of $<=$ is just A XA. It is clear that $\mid \mathrm{A}$ $X A \mid=16$ elements
c) Symmetry: Show that $a \leq a$
$a=m a$ if $m=1$ so true
Anti-reflexive: Assume $a \neq b$ and $a \leq b$. Show that $b \not \leq a$. if $b=m a$ then to get $a=m b$ then $m$ has to be a traction which. does not exist. Hence $b \$ a$
Transitive: Note that the set here is finite. By staring we see only three different elements in A where $\mathrm{a}<=\mathrm{b}$ and $\mathrm{b}<=\mathrm{c}$ (namely $\mathrm{a}=2, \mathrm{~b}=4, \mathrm{c}=8$ ). So $\mathrm{a}<=\mathrm{b}$ and $\mathrm{b}<=\mathrm{c}$. Show that $\mathrm{a}<=\mathrm{c}$, i.e. show that $2<=8$. Since $8=2 \mathrm{X} 4$ ( m here equals 4 and 4 is in B). So $2<=8$

Maximal : $18,12,10,8$
Minimal : $2,6,10,18$
Greatest : does not exist
Least : does not exist
Notes $\forall a, 10 \not \$ a$ and $a \not \& 10$

$$
\forall a, 18 \$ a \text { and } a \not \$ 18
$$

