-, ID –

Assignment 7: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1. a) Let $A = \{1, 3, 4\}$. Define " \leq " on $A : \forall a, b \in A$, we say $a \leq b$ iff $a < b^3$. Then " \leq " is not a partial order relation on A. Why?

b) Let $A = \{-5, -4, -2, -1\}$. Define " \leq " on $A : \forall a, b \in A$, we say $a \leq b$ iff $a^2 > b^3$. Then " \leq " is not a partial order relation on A. Why?

Is \leq an equivalence relation? If yes, how many elements does " \leq " have? Do not write them down!

c) Let $A = \{2, 4, 6, 8, 10, 12, 18\}$ and $B = \{1, 2, 4\}$. Define " \leq " on $A : \forall a, b \in A$, we say $a \leq b$ iff b = ma for some $m \in B$. Then " \leq " is a partial order relation on A. Why? Find maximal, minimal, least, and greatest elements of A under \leq if they exist.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Assignment 8

Nada Abdalgawad

a) Symmetry
$$a \le a$$
 iff $a \le a^3$ $\forall a \in A$
so for element $1 \Rightarrow 1 \le 1^3$ not true
Not a partial order relation
b) 1) Symmetry $a \le a$ iff $a^2 > a^3$ $\forall a \in A$
 $a = A$, positive $>$ negative so it is true
Anti-reflexive: Assume $a \le b$ and $a \ne b$. Show that $b \le a$
 $\forall a, b \in A$, $a^2 > b^2$ but $abc \ b^2 > a^3$
 $\exists xample, a_2 - 5, b = 4 \Rightarrow a^2 > b^3 \Rightarrow 25 > -64$
if $b \ge -5$, $a = -4 \Rightarrow b^2 > a^3 \Rightarrow 25 > -64$
Not true since $a \le b$ and $b \le a$
ii) From above,
Note: name of the relation is <= and not =. So we must
Symmetry is true use the name <=
Reflexive: $a^2 > b^3$ and $b^2 > a^3$ so $a = b$ and $b <= a$
 $\exists xamsitive: A + sume da = b$ and $b <= c$
 $a <= b = a^2 > b^3$ and $b^2 > a^3$ so $a = b$ and $b <= a$
 $b = b^2 > c^3$
 $square is always positive and cube is always negativebr the set A. $\therefore a^2 > c^3 \Rightarrow a < a <= c$
" \le ' is an equivalence class since a leq b for every
a, b in A. Thus [-2] = A.
The elements of <= is just A X A. It is clear that $|A = XA| = 16$ elements$

Scanned by CamScanner

c) Symmetry: Show that a ≤ a a=ma if m=1 so true Anti-reflexive: Assume a≠b and a ≤ b. Show that b ≠ a. if b=ma then to get a=mb then m has to be a fraction which does not exist. Hence b ≢ a

Transitive: Note that the set here is finite. By staring we see only three different elements in A where $a \le b$ and $b \le c$ (namely a = 2, b = 4, c = 8). So $a \le b$ and $b \le c$. Show that $a \le c$, i.e. show that $2 \le 8$. Since 8 = 2X4 (m here equals 4 and 4 is in B). So $2 \le 8$

Note:
$$\forall \alpha$$
, $10 \not\equiv a$ and $\alpha \not\equiv 10$
 $\forall \alpha$, $18 \not\equiv \alpha$ and $\alpha \not\equiv 18$